
Phylogenetic Trees

Python Code

User Manual:

RCC and RCC1

by

Wesley Johnston

Last Updated

14 July 2020

Contents
1. About Phylogenetic Trees and the Python Code

2. Input Data

3. Setting the Control Parameters

4. Managing the Output

5. Troubleshooting

6. Special Considerations and RCC1

Appendices

1. RCC Python Code

2. RCC1 Python Code

3. Tests Input Order of Kits

4. Convergence, Reverse and Parallel Mutations

Section 1
About Phylogenetic Trees and the Python Code

Bill Howard
The late Astronomer William E. Howard III developed and freely shared his

method for generating phylogenetic trees from Y-DNA STR data. He published

his first two papers in 2009 in the Journal of Genetic Genealogy:

• “The Use of Correlation Techniques for the Analysis of Pairs of Y-STR

Haplotypes, Part 1: Rationale, Methodology and Genealogy Time Scale”

• “The Use of Correlation Techniques for the Analysis of Pairs of Y-STR

Haplotypes, Part 2: Application to Surname and Other Haplotype

Clusters”.1

He went on to publish many more papers, with various co-authors on some

of them. He sought to apply his method as much as possible, exploring the

potential and the limits of his method. The subtitle of his 2014 paper "Using Y-

DNA Haplotypes to Estimate Their Dates of Origin: Pitfalls and Prospects" reflects

this well. He was very willing to share his work, carefully explaining precisely

how the method work so that anyone wishing to follow in his footsteps could

replicate his method.

Bill Howard passed away 25 July 2016. The state of the art of Y-DNA has

changed greatly. Family Tree DNA now has the Big Y-700 test and uses SNPs to

cluster kits into buckets on the Big Y Block Tree. This recent focus on SNPs has

led to some people discounting the value of STRs in Y-DNA genetic genealogy.

But STRs give a level of granularity in recent branching that SNPs cannot give.

Both are needed.

Bill Howard’s phylogenetic trees provide a track record of many applications

over many years. Although limitations appeared in some applications, it works

very well in other situations.

My own sense is that phylogenetic trees work well with kits that cluster in the

same bucket (or even adjacent buckets) at the lowest level of the Big Y Block

Tree. In those cases, phylogenetic trees provide a time-gradient DNA-based

estimate of when branches separated from each other, a level of specificity that

the SNPs cannot provide. For surname projects, it may be that only certain

1 All of Bill’s papers and other sharing that he did that I have been able to find are gathered on the web page at

http://www.wwjohnston.net/famhist/bill-howard-ydna.htm

subsets of the kits really belong together. For haplogroup projects, my sense is

that the method may not work for that broad a population of kits.

RCC (Revised Correlation Coefficient)
Bill’s fundamental measure for comparing pairs of kits to generate the

phylogenetic trees is what he called the Revised Correlation Coefficient (RCC):

RCC = 10000 * ((1/CC) -1)

where CC is the Pearson Correlation Coefficient of the values of the Y-STR

markers in a specific pair of kits. He builds a matrix of all possible pairs of kits,

in which the value of each cell in the matrix is the RCC value for that pair, with

0 for a perfect match and higher values meaning higher distance from each other.

The Python Code
The Johnstons of Annandale project, administered by Clifford Johnston, has

relied on Bill Howard’s phylogenetic trees for many years. This is a very specific

subset of the Johnstons. The kits cluster nicely in adjacent buckets of the Big Y

Block Tree, so that the SNPs align well with the STRs. The STRs can then take

the analysis the next step beyond what the SNPs can show.

Bill Howard began his work using Excel spreadsheet formulas. He eventually

implemented it in R code, run in MatLab. After Bill’s death, some in the Johnston

project grew concerned that Bill’s method should remain available to the project.

Since Bill was very transparent in his papers, in 2018 Wesley Johnston and

George El Zakhem in the United States and David Johnston in Australia began

developing code to replicate Bill Howard’s method. George El Zakhem developed

the first implementation in Mathematica. David Johnston in Australia then

developed a robust Python implementation, which became the core program.

George El Zakhem then worked with that to make the first runs on the combined

kits of the Eastlick and Lake projects, which Wesley Johnston then augmented.

The code now available thus represents the culmination of the work of Bill

Howard, David Johnston, George El Zakhem and Wesley Johnston.

The RCC1 Version
During work on the Lake DNA kits, Wesley Johnston discovered that the

phylogenetic tree placed one kit on a branch that conflicted with where Big Y

SNP results, autosomal results and documented family trees placed it.

Examination of the markers for that kit revealed that one marker had a 3-step

mutation. Because the RCC method relies on the correlation coefficient of actual

marker values in pairs of kits, this 3-step mutation had caused the

misplacement of the kit in the tree.

After considering alternatives of how to handle this situation, Wesley relied

on developing a method, which he called RCC1, analogous to how simple genetic

distance is calculated. If a marker’s value differs by 3 for two people, stepwise

genetic distance counts that as a distance of 3, but simple genetic distance

counts differences of any size as 1.

In work with other family project data, Wesley realized that RCC1 mutes the

impact of any multi-step mutations. This meant that the person running the

program could use the same data used in the RCC program and not have to deal

with discovering and finding a workaround for specific markers.

As of this writing, Wesley has run the RCC1 version for two different family

projects. In both cases, the RCC1-generated phylogenetic tree more accurately

reflected what other DNA evidence and documents had found as where the kits

belonged in relation to each other.

The details of running the two versions are identical. Sections 2-5 apply to

both versions, and Section 6 has the specifics about the RCC1 version.

Wesley’s standard procedure now includes running the same data

through both the RCC and the RCC1 versions. He then examines the

generated trees to see whether they place specific kits differently. Such likely

have multi-step mutations in at least one marker.

Section 2
Input Data

Data Format
The input data comes into the program in the form of a CSV (comma-separated

variables) file. The format is very simple.

Rows

• The first row is the header row.

• The remaining rows each represent a single Y-DNA test kit’s results.

Columns

• The left column is the name you want to appear on the phylogenetic tree

for that kit. For the first row, enter the label “Name”. If you do not want

any name to appear, it is best to enter a period in each subsequent row.

Otherwise, Python will default to a text string that it uses for missing

values.

• The second column from the left is the kit number column. For the first

row, enter the label “Kit”. Each subsequent row should have the kit

number so that you can clearly identify that kit on the phylogenetic tree.

• The third and subsequent columns are for the values (alleles) of the STR

markers. The first row has the labels for the markers.

Multi-valued Markers
Family Tree DNA presents the multi-valued markers as a single marker with

multiple values. For example, the value of DYS385 may appear as 11-14, or

DYS464 may appear as 13-15-16-17.2

When the results are exported from Family Tree DNA or copied from the

project results screen into a spreadsheet, one of two things can happen. If the

receiving fields in the spreadsheet are pre-defined as Text, then the values will

appear as they do in Family Tree DNA. Otherwise, the values that can be

considered dates, will show either as the date or will be converted to the internal

number that the spreadsheet uses to represent a date.

2 Bill Howard addressed what he called multi-copy markers on page 27 of his 25 February 2014 paper “Uniting the

Time Scales of Genealogy and Genetics Using Correlation Techniques to Explore Y-DNA”. He studied permutations

of the multi-valued markers and concluded that “the errors introduced through the use of multi-copy markers will

be minimal or non-existent.”

For example, the value 11-14 will appear correctly in a pre-defined Text cell.

But it will be converted into the date 14 November of the current year, so that in

2020 the cell will show either the date (“14-Nov”) or the internal value (“44149”).

The format needed for input to the Python code requires that all multi-valued

markers be separated into individual columns. So, you have to go through the

imported kits in your spreadsheet and separate them: the one column with “11-

14” must become two columns, one with “11” and the other with “14”. This must

be done for all mutli-valued markers.

Extra Values in Multi-valued Markers

On rare occasions, a multi-valued marker that normally has only two values will

appear with three values. For example, CDY may normally show “37-38” or “35-

40”, but it may sometimes show “34-35-36”. I believe that in one of his papers,

Bill advised to simply take the first two values in such a case (i.e. “34-35”).

However, this is a subjective choice, and my own preference is to take the

extreme values, thus “34-36” in the case of “34-35-36”. I have not conducted any

study of this, and I do not know that Bill did. So, this is an area open for research.

But these cases are so rare that it has little impact in most surname-specific

projects.

Example Data Input
Here is how the data will look in a spreadsheet:

Here is how the same data will look in the CSV file (with the rows truncated

to correspond to the spreadsheet view):

Name,Kit,DYS393,DYS390,DYS19,DYS391,DYS385a,DYS385b,DYS426,DY

Lake,L25404,13,24,14,11,11,14,12,

Lake,L25424,13,24,14,12,11,14,12,

Lake,L36265,13,25,14,11,11,15,12,

Input Gotcha
One error that sometimes shows up is when you have blank rows in the

spreadsheet after the data rows. This will lead to an input error when you run

the program. In that case, delete the extra blank rows in your input data file.

Proper Grouping of Input Kits
The input data must have the same number of columns for every row. Thus, you

cannot run a 12-marker test in a run with 37-marker kits. The calculation of the

correlation coefficient, the fundamental calculation in Bill Howard’s method, will

fail if every kit does not have the same number of markers.

If you wanted to run 37-marker kits with 67 and 111-marker kits, you would

need to truncate the results of the 67 and 111-marker kits to their first 37

markers, so that all rows have exactly 37 markers.

Here is a note that Bill Howard posted 30 Nov 2013 on the Rootsweb

Genealogy-DNA e-mail list:3

“One last point, please try to make the haplotype set as pure as possible. By that

I mean, if it is an M222 SNP, be sure all haplotypes have been SNP-tested. If it is

a surname set, I would prefer that they all are in the same haplogroup (otherwise

the tree gets unwieldy, long, and will lack time resolution in regions of genealogical

interest). The larger the set, the better the optimization process will be when the

tree is produced …”

See Appendix 4 “Convergence, Reverse and Parallel Mutations” for more

information.

Ordering of Input Kits
Tests run on various orderings of the sequence in which the kits were presented

to the program all resulted in the same phylogenetic tree output. So there does

not appear to be any bias in the clustering from the order in which the kits are

presented. See the Appendices for more on this.

Entering the File Name in the Program
Enter the file name of your input CSV file in single quotes as the value of the

variable I in the first line of code after the importing of the external functions.

So, if your CSV file is “37-marker-kits.csv”, then after entering the file name as

the value of I, the top lines of code in the program will look like this:

from scipy.stats import pearsonr

from scipy.cluster.hierarchy import dendrogram, linkage

#from pprint import pprint

import numpy as np

import pandas as pd

from scipy.spatial.distance import pdist

from matplotlib import pyplot as plt

import math

3 Rootsweb terminated support for e-mail lists in 2020. The Genealogy-DNA list successor for the broadest group of

former Rootsweb members is now at https://groups.io/g/genealogy-dna

I = 37-marker-kits'

#Specify the file name of the CSV file.

This will also become the title of the phylogenetic tree and the name of the output

file with the tree.

As noted in the comment, the title of the generated phylogenetic tree will have

this same name, and so will the file that contains the image of the tree.

Section 3
Setting the Control Parameters

Rscale
Rscale is the ratio of years per RCC (or RCC1 in the RCC1 version). Rscale is

used to calculate the year in which the phylogenetic tree has a split of two

branches from each other.

Calibrating the value of Rscale (years/RCC or years/RCC1 ratio)

Ideally, the value should be calibrated from your own data. To do so, you need

one or more pairs of kits for whom you know their common ancestor. You then

calculate the years from the birth of the ancestor to the birth of the test taker for

each person in the pair and then divide that by the RCC (or RCC1) value of the

pair. Then use the average of the individual ratios as the value of Rscale.

It is important to not use kits that are too close to each other. This is because

they will have a small RCC (or RCC1), which will lead to a large years/RCC ratio

(or years/RCC1). So how close is too close? There is no definitive answer. I start

by ruling out of the calibration pairs that have RCC (or RCC1) of 5 or less. But

when you see several pairs generating years/RCC (or years/RCC1)ratios around

35 or 40 when another pair generates a ratio of 114, then that pair at 114 is

almost certainly too close to include in the calibration.

The calibration must be made for each level of markers. The years/RCC (or

years/RCC1) ratio for a set of kits at 37 markers will almost certainly not be the

same as the years/RCC (years/RCC1) ratio for the same kits at 111 markers.4

It may also be worth calibrating pairs of kits with a distant Most Recent

Common Ancestor (MRCA) separately from those who descend from a more

recent MRCA and seeing how the two different ratios estimate the dates for the

different parts of the tree.

What If Calibration is Impossible?

If you have no pairs of sufficiently distant kits for whom the common ancestor is

known, then you cannot do the calibration calculation. In this case, start with a

value of 40 for 111 markers, 37 for 67 markers and 34 for 37 markers. These

will probably place you in the right ballpark. But keep trying to find a pair of kits

that you can use to do your own calibration.

4 Bill Howard did a lot of research on the calibration, as he worked on different applications of his method to specific

families. Several of his papers have important information about these experiences.

Byear
Byear is the approximate birth year of present-day test takers to use in the

calculation of the years in which branch splits happened. So, you need at least

a rough idea of the birth years of most of your test takers. Setting Byear to 1950

may be about right if there is a mixture of older and younger test takers.

Here is the formula used to calculate the year of a branch split from the values

of Rscale, Byear and RCC (or RCC1 in the RCC1 version).

Split year = 10 * INT([Byear – INT(RCC * Rscale)]/10)

where INT is the INTEGER function that eliminates all decimal places (e.g.

INT(3.141) = 3).

So if Rscale is 38 and Byear is 1950 and the branch split happened at RCC

=7.27, then the calculation goes as follows:

RCC * Rscale = 38 * 7.27 = 276.26
INT(RCC * Rscale) = INT(276.26) = 276

Byear – INT(RCC * Rscale) = 1950 – 276 = 1674
(Byear – INT(RCC * Rscale))/10 = 1674/10 = 167.4

INT[(Byear – INT(RCC * Rscale))/10] = INT(167.4) = 167
10 * INT[(Byear – INT(RCC * Rscale))/10] = 10 * 167 = 1670

So, the branch split happened in about the year 1670. Note that the process

always generates a split year estimate truncated to the next lowest decade. So

instead of displaying the split year as 1674, it shows it as 1670.

Setting Rscale and Byear
The Rscale and Byear variables are set immediately after the input I variable. So

if you set Rscale top 34.65 and Byear to 1951, then the highlighted lines below

are all that you need to do to set up a run of your data through the program.

from scipy.stats import pearsonr

from scipy.cluster.hierarchy import dendrogram, linkage

#from pprint import pprint

import numpy as np

import pandas as pd

from scipy.spatial.distance import pdist

from matplotlib import pyplot as plt

import math

I = 37-marker-kits'

#Specify the file name of the CSV file.

This will also be the phylogenetic tree’s title and file name.

Rscale = 34.65

Byear = 1950

Rscale is the years/RCC ratio, calibrated to this family for the number of markers.

Byear is the Birth Year used to compute the split years.

Set it at about the birth year of the test takers used to calibrate Rscale.

Setting RCC1added (RCC1 version only)
In the RCC1 version, the RCC1added variable determines the fill value for the

fabricated z1 vector and thus indirectly for the values of the fabricated z2 vector.

RCC1added normally has the value 13 since that is the average value across all

111 markers in most kits. Altering the value of RCC1added probably requires

calibrating the years/RCC1 ration.

RCC1added is set in the RCC1 version immediately after the Rscale and Byear

variable setting lines.

Setting RCC1markers (RCC1 version only)
In the RCC1 version, fabricated vectors z1 and z2 must be set to the correct

number of markers. So, if the input kits are 67-marker results, set RCC1markers

to 67. If the input kits are 111-marker results, set RCC1markers to 111.

RCC1markers is set in the RCC1 version immediately after the Rscale and

Byear variable setting lines.

Section 4
Managing the Output

Overview
Family Tree DNA measures genetic distance (GD) stepwise, so that a difference

in value of 2 between two kits counts as 2 in the genetic distance (as opposed to

a difference-only genetic distance measure that would count such a difference

as 1). Family Tree DNA also uses thresholds at each level of markers to display

matches.5 If another kit differs from your kit by more than the threshold, Family

Tree DNA does not display that kit in your match list.

Bill Howard’s method works most accurately when the kits included have

reasonably close genetic distances. If all pairs of kits in your input data have

genetic distances of 10 or less at 111 markers, 7 or less at 67 markers, or 5 or

less at 37 markers, then your kits likely fall within the limits of applicability for

Bill Howard’s method.

This is important because the version of the Python code in the appendix

expects such pairings. And the formatting of the output, the phylogenetic tree

thus works well for such pairings. You will probably not have to worry about

managing the output, since the default version will probably work well for you.

Runs with Higher Genetic Distances
When you first begin a study, you may want to generate a phylogenetic tree with

kits whose genetic distances are greater. While the generated phylogenetic tree

may not be accurate as to the split years and may even have some structure

problems, such a run can identify separate clusters for which you may want to

follow up with normal runs that use only the kits from one of those clusters.6

The inclusion of kits for which the splits of branches go back 1,000 years or

more cannot be handled by the default version of the Python program. You need

to modify the output format parameters for such runs.

The critical line in the Python code is this as the default:

plt.xticks(np.arange(0,800,1))

5 See https://learn.familytreedna.com/y-dna-testing/y-str/expected-relationship-match/ for the thresholds and

expected levels of relationship.
6 Beware of marker DYS481 in all your work but especially when dealing with high-GD collections of kits. DYS481 has

very high DNA “stutter”. If your data shows multi-step mutation on DYS481, you should probably eliminate DYS481

from your analysis. See Section 5 for more on DYS481.

This determines the X-axis (the RCC axis) vertical grid lines (ticks). It starts at

zero, at the bottom right corner of the plot and then steps back 1 step at a time

for up to 800 steps. The number 800 is chosen arbitrarily as a large number that

is never expected to be reached. Each unit is 1 RCC.

Here is an example of the X-axis for a group of kits that go back 6 RCC:

The dashed green lines are the X-axis grid lines, counting, from right to left, back

in time up to 6 RCC back in time for the first branch split. When the Rscale value

is 40, this is about 240 years into the past.

But when the program determines the first branch split on a collection of

distant kits was at RCC = 85 or some other high value, the attempt to plot the

resulting phylogenetic tree may fail because of a MAXTICKS error.

One way to deal with this is to increase the number of RCCs between grid

lines, such as the following:

plt.xticks(np.arange(0,800,12))

This places the grid lines 12 RCCs apart: 0, 12, 24, etc. Here is an example of

the X-axis for a run in which the first branch split happens at RCC = 287.09:

Attempting to use the default of one RCC per grid line results in an error that

points to a different instruction:

But when you trace down to the error at the actual instruction in the called

subroutine, the error is a MAXTICKS error:

So it is not the flagged instruction that caused the problem but the plt.xticks

instruction. And the solution is to increase the value of the parameter that

controls the number of RCCs between grid lines (ticks).

Section 5
Troubleshooting

Run-Time Problems
We encountered many different run-time problems, all of which traced back to

our data, once the python code was well established. This section gives some

specific cases.

Invalid Value Encountered in Double Scalars (GD limitation)
The error report looks like this in an Anaconda Jupyter Notebook, sometime

without the boxed “invalid value” message at the top:

The problem turned out to be that the stepwise genetic distances between some

pairs of kits were too great. While systematic testing has not been done, limited

testing found that GD of 46 or less worked, while adding just one more kit with

a GD of 66 from a kit defined as the standard resulted in the error message above

(without the top box).

Number of Kits (Plot readability limitation)
Test runs with as many as 216 kits worked successfully, as long as the stepwise

genetic distances were within acceptable limits. The problem becomes the

readability of the phylogenetic tree, since so many cases are force-fit onto a single

page.

A run with 1080 within-GD-limits kits took a long time to run and then

generated this error (showing just the top and bottom level errors in the error

stack):

The more kits in the input data, the longer the time will be to do the run. The

complexity of the processing increases. As more kits are added to the dataset,

the matrix calculations must then include calculation of the RCC for this new

kit in relation to every kit already in the dataset.

Section 6
Special Considerations and RCC1

DNA Stutter
When the combination of Big Y, autosomal DNA and documented family history

led to the expectation that one kit should align with three others in the

phylogenetic tree, we sought the cause of the placement in the tree. It turned out

that going back more than a decade, forensic DNA researchers had identified

marker DYS481 (which is in the 38-67 marker panels and thus is in 67 marker

and 111 marker tests) as having high “stutter”:

“During the PCR amplification process, the polymerase can lose its place when

copying a strand of DNA, usually slipping forwards or backwards four base pairs.

The result is a small number of DNA fragment copies that are either one repeat

larger or smaller than the true fragment being amplified.”7

“Stutter is the most common instrumental artefact and is caused by DNA slippage

during amplification. Stutter occurs in between 6-10% of amplification products.”8

To be clear, DNA stutter happens in the laboratory and does not reflect the

actual value of a person’s Y-DNA. When stutter occurs in those relatively few

cases, the value shown for the person for that marker is not the true value. It

seems that it is impossible to know at the time of amplification that stutter has

occurred. The only way to detect it seems to be in examining the results and

seeing that a person has a value for a marker that does not agree with his known

relatives. The only way to know the true value is to do a second test and hope

that stutter does not occur again.

Because the Revised Correlation Coefficient relies on the actual values of the

markers, this difference of 3 in one marker resulted in the misalignment of the

kit in the phylogenetic tree. Removing DYS481 and generating a phylogenetic

tree from the remaining 110 markers (and re-calibrating the years/RCC ratio)

generated a tree with the kit in the alignment that all the other DNA and family

tree evidence led to expect.

DYS481 does not always exhibit stutter. In the example above, all other kits

had the value 22. It appears that stutter occurs in the laboratory, so that the

actual value of the marker cannot be known without retesting it. Was this kit an

7 http://www.bioforensics.com/dna-testing-issues
8 https://www.phe-culturecollections.org.uk/services/celllineauthenticationservices/interpretation-of-cell-line-str-

profiles-instrumental-artefacts.aspx

actual 22? Or was there some actual mutation present? It was impossible to

know.

For whatever reason, the genetic genealogy literature seems unaware of the

problem, most likely because it is difficult to spot. The only way we found it was

when the generated phylogenetic tree placed the kit differently than all other

evidence led us to expect it should be. Genetic genealogists have recently focused

more on SNPs and neglected STRs, which is another reason the literature may

be silent.

Forensic researchers have identified stutter in other markers. If your

phylogenetic tree places a kit differently than where you expected, look at the

markers and see if there is a multi-step difference (a difference of more than 1)

in the value of one of that kit’s markers, and then check the web to see if forensic

DNA research has identified that as a DNA stutter marker.9

“Fast Mutating” Markers
Genetic genealogists have identified some STR markers as “fast mutating”.10

These tend to have more mutations in a period than do other markers, or they

tend to mutate in multiple steps, such as a value of 24 mutating to 26. The

impact of these markers on comparisons of pairs of kits is similar to cases of

DNA stutter.

Genetic Distance: Stepwise and Simple
Two main ways exist to calculate genetic distance (GD) between two kits of Y-

STRs. If a specific marker’s value differs by 3 between the two kits, Stepwise GD

counts the difference as 3. But Simple GD counts a distance of any size as 1.

Stepwise GD is thus impacted more by DNA stutter and fast mutations than

is Simple GD. Simple GD has the effect of muting the impact of DNA stutter and

fast mutations.

RCC1
Work with different families to generate phylogenetic trees revealed projects in

which either DNA stutter or fast mutation led to phylogenetic trees that placed

one or more kits on branches not supported by Big Y SNP results, autosomal

DNA results and documented family trees. The misplacement in the tree led to

examination of the markers in those kits.

9 See Table 11A at http://www.pbso.org/qualtrax/QTDocuments/4253.PDF for other markers found by the Palm

Beach County Sheriff’s Office to have different levels of stutter.
10 See https://isogg.org/wiki/Mutation_rates and https://lists.rootsweb.com/hyperkitty/list/genealogy-

dna.rootsweb.com/thread/2492202/

Jumping ahead, in one family, the problem was DNA stutter in DYS481. In

the other family, the problem was a 2-step mutation of CDYb (the higher value

of the 2-valued marker CDY). In both cases, RCC1 received the same data as

RCC but generated trees that more accurately reflected the placement expected

from Big Y and autosomal DNA and documented family trees.

So, what is RCC1?

Essentially, RCC1 is to RCC what Simple GD is to Stepwise GD. RCC1 mutes the

impact of multi-step mutations. The RCC1 program retains the majority of the

code of the RCC version and differs only in how it computes the Revised

Correlation Coefficient.

And, specifically, how does RCC1 differ from RCC?

The difference in the two methods is primarily in the routine that calculates the

correlation coefficient and then the RCC or RCC1 value.

In RCC, the correlation coefficient is calculated directly from the results of the

two kits’ values in each marker.

calculate a condensed distance matrix consisting of RCC values as per Bill Howards

paper

the condensed distance matrix is a single dimension matrix containing

the top triangle of a two dimensional distance matrix

e.g. [1,2,3,4]

[2,1,2,3]

[3,2,1,2]

[4,3,2,1]

becomes a condensed distance matrix Y of [2,3,4,2,3,2]

Y = []

X = []

for i1,v1 in enumerate(K):

 X1 = []

 for i2,v2 in enumerate(K):

 if i2 > i1:

 Y.append((1/pearsonr(v1,v2)[0]-1)*10000.0)

 X1.append((1/pearsonr(v1,v2)[0]-1)*10000.0)

 X.append(X1)

RCC1 fabricates new vectors z1 and z2, replacing the actual kits in the

calculation of the correlation coefficient. To do this RCC1 uses the user-set

variable RCC1added to populate the first vector. (I use 13 for RCC1added, since

it is the average value of all 111 markers for most kits.) RCC1 also requires that

the user specify in variable RCC1markers the number of markers in the input

kits,

In the first part of the processing, RCC1 initializes vector z1 to have a value

of 1 for the second marker (the one with an index value of 1 in the vector) and a

value of RCC1added in all other markers.

RCC1 then compares the two actual kit (vectors v1 and v2) for each marker.

If the kits have the same value for the marker, RCC1 sets that marker in vector

z2 to the same value as vector z1 has for that marker (i.e. either 1 or 13, if

RCC1added was set to 13). If the marker has different values in the two kits v1

and v2, then RCC1 sets the marker in vector z2 to one less than the value of the

marker in vector z1 (i.e., either 0 or 12, if RCC1added was set to 13).

Thus vector z1 is always fixed, while vector v2 changes for those markers

where the two kits differ in value. Here is the code for the first part of the RCC1

routine that corresponds to the routine in RCC.

RCC1added = 13

RCC1markers = 111

...

calculate a condensed distance matrix consisting of RCC values as per Bill Howards

paper

the condensed distance matrix is a single dimension matrix containing

the top triangle of a two dimensional distance matrix

e.g. [1,2,3,4]

[2,1,2,3]

[3,2,1,2]

[4,3,2,1]

becomes a condensed distance matrix Y of [2,3,4,2,3,2]

Y = []

X = []

for i1,v1 in enumerate(K):

 X1 = []

 z1 = np.zeros((RCC1markers,), dtype=int)

 for z1x in range(RCC1markers):

 if z1x == 1:

 z1[z1x] = 1

 else:

 z1[z1x] = RCC1added

 for i2,v2 in enumerate(K):

 z2 = np.zeros((RCC1markers,), dtype=int)

 for x in range(RCC1markers):

 if v2[x] == v1[x]:

 z2[x] = z1[x]

 else:

 z2[x] = z1[x]-1

RCC1 then calculates the correlation coefficient and RCC1 value of the two

fabricated vectors z1 and z2 and then calculates the RCC1 value. This code is

almost identical to the RCC code, except that z1 and z2 replace v1 and v2.

However, tests were added to deal with the two arrays being identical, since that

case has zero variance and fails in the calculation of the correlation coefficient.

 if i2 > i1:

 if np.ndarray.all(z1 == z2):

 Y.append(0)

 else:

 Y.append((1/pearsonr(z1,z2)[0]-1)*10000.0)

 if np.ndarray.all(v1 == v2):

 X1.append(0)

 else:

 X1.append((1/pearsonr(z1,z2)[0]-1)*10000.0)

 X.append(X1)

Appendix 1
RCC Python Code

User Manual at http://www.wwjohnston.net/famhist/bill-howard-ydna.htm

from scipy.stats import pearsonr

from scipy.cluster.hierarchy import dendrogram, linkage

import numpy as np

import pandas as pd

from scipy.spatial.distance import pdist

from matplotlib import pyplot as plt

import math

---------1 - SET CONTROL VARIABLES------------------------------

I = 'yoemans-111Corrected'

#Specify the file name of the CSV file.

This will also be the phylogenetic tree’s title and file name.

Rscale = 34.65

Byear = 1950

Rscale is the years/RCC ratio, calibrated to this family & number of markers.

Byear is the Birth Year used to compute the split years.

Set Byear about the birth year of the test takers.

---------2 - READ INPUT INTO MATRICES------------------------------

read the Input file

C = pd.read_csv("{input}.csv".format(input=I)).values

extract the kits as rows of observations and columns of attributes (markers)

K = C[:,2:845]

Note that the numbering starts with 0 and not 1 for both rows and columns.

extract the kit numbers and names to produce a labels matrix

L = []

for ix,row in enumerate(C):

 L.append("#{ix} {kit} {name}".format(ix=ix+1,kit=row[0],name=row[1]))

reverse the list and kits

#L = L[::-1]

#K = K[::-1]

---------3 - CALCULATE RCC MATRIX FOR ALL PAIRS OF KITS-------------

calculate a condensed distance matrix consisting of RCC values as per Bill Howards

paper

the condensed distance matrix is a single dimension matrix containing

the top triangle of a two dimensional distance matrix

e.g. [1,2,3,4]

[2,1,2,3]

[3,2,1,2]

[4,3,2,1]

becomes a condensed distance matrix Y of [2,3,4,2,3,2]

Y = []

X = []

for i1,v1 in enumerate(K):

 X1 = []

 for i2,v2 in enumerate(K):

 if i2 > i1:

 Y.append((1/pearsonr(v1,v2)[0]-1)*10000.0)

 X1.append((1/pearsonr(v1,v2)[0]-1)*10000.0)

 X.append(X1)

---------4 - GENERATE THE PHYLOGENETIC TREE SPLITS-------------

perform the agglomerative clustering using the average method as per Bill Howards

paper

Z = linkage(Y,method='weighted',optimal_ordering=False)

perform linkage reordering such that the shorter branch is first, the longer branch

second

the lower index is first, the higher index is second

for link in Z:

 leftDepth = link[0]

 if leftDepth >= len(L):

 leftDepth = Z[int(leftDepth)-len(L),3]

 else:

 leftDepth = 1

 rightDepth = link[1]

 if rightDepth >= len(L):

 rightDepth = Z[int(rightDepth)-len(L),3]

 else:

 rightDepth = 1

 if leftDepth < rightDepth:

 t = link[0]

 link[0] = link[1]

 link[1] = t

 elif link[0] < link[1] and link[0] < len(L) and link[1] < len(L):

 t = link[0]

 link[0] = link[1]

 link[1] = t

---------5 - PLOT THE PHYLOGENETIC TREE-------------

plot the cluster hierarchy produced by linkage as a dendrogram

F = plt.figure(figsize=(16,20),dpi=72) # A1 paper

plt.title(I)

plt.xlabel("RCC")

plt.grid(True,which='major',axis='x',color='g',linestyle='dashed')

plt.minorticks_on()

plt.tick_params(axis='x',which='minor')

plt.tick_params(axis='y',which='minor',length=0)

#plt.xscale('symlog',basex=2)

plt.xticks(np.arange(0,800,12))

#plt.xticks((0,1,2,4,8,16,32,64,128,256),(0,1,2,4,8,16,32,64,128,256))

- use this on recent kits within the last 50 RCC: plt.xticks(np.arange(50))

- use this on kits that split way back BCE: plt.xticks(np.arange(0,800,25))

D =

dendrogram(Z,labels=L,color_threshold=3.5,leaf_font_size=12,leaf_rotation=0,orientati

on='left')

#plt.gca().invert_yaxis()

for i, d, c in zip(D['icoord'], D['dcoord'], D['color_list']):

 y = 0.5 * sum(i[1:3])

 x = d[1]

 if x > 0:

 plt.plot(x, y, 'o', c=c)

 yr = math.floor((Byear - int(x* Rscale))/10)*10

 yr = int(yr)

 if yr >= 0:

 yr_txt = "{yr}".format(yr=yr)

 else:

 yr_txt = "{yr} BCE".format(yr=-yr)

 #rcc_txt = int(x*10)/10

 rcc_txt = "{:.2f}".format(x)

 plt.annotate("%s" % yr_txt, (x, y), xytext=(-6, -12),

 textcoords='offset points', color='r',

 va='center', ha='center', rotation=90)

 plt.annotate("%s" % rcc_txt, (x, y), xytext=(+7, 0),

 textcoords='offset points', color='r',

 va='center', ha='center', rotation=90)

plt.annotate("RCC = {rscale} years".format(rscale=Rscale),(0,0),xytext=(0,-5))

F.subplots_adjust(left=0.05, right=0.85, top=0.97, bottom=0.05)

plt.savefig("{input}.jupyter.png".format(input=I))

cite: http://www.jogg.info/pages/72/files/Howard.htm

Dating Y-DNA Haplotypes on a Phylogenetic Tree: Tying the Genealogy of Pedigrees and

Surname Clusters into Genetic Time Scales

William E. Howard III and Frederic R. Schwab

http://www.wwjohnston.net/famhist/bill-howard-ydna.htm

This code originally written by David Johnston in Australia.

Modified by George El Zakhem and Wesley Johnston in the USA.

Appendix 2
RCC1 Python Code

User Manual at http://www.wwjohnston.net/famhist/bill-howard-ydna.htm

from scipy.stats import pearsonr

from scipy.cluster.hierarchy import dendrogram, linkage

#from pprint import pprint

import numpy as np

import pandas as pd

from scipy.spatial.distance import pdist

from matplotlib import pyplot as plt

import math

---------1 - SET CONTROL VARIABLES------------------------------

I = 'yoemans-111Corrected'

#Specify the file name of the CSV file.

This will also be the phylogenetic tree’s title and file name.

Rscale=1.27

Byear = 1950

RCC1added = 13

RCC1markers = 111

Rscale is the years/RCC ratio, calibrated to this family & number of markers.

Byear is the Birth Year used to compute the split years.

Set Byear about the birth year of the test takers.

RCC1added = 13

RCC1markers = 111

RCC1 is the value to which fabricated vector z1 markers are set.

RCC1markers is the number of Y-STR markers of each input kit.

---------2 - READ INPUT INTO MATRICES------------------------------

read the Input file

C = pd.read_csv("{input}.csv".format(input=I)).values

extract the kits as rows of observations and columns of attributes (markers)

K = C[:,2:845]

Note that the numbering starts with 0 and not 1 for both rows and columns.

extract the kit numbers and names to produce a labels matrix

L = []

for ix,row in enumerate(C):

 L.append("#{ix} {kit} {name}".format(ix=ix+1,kit=row[0],name=row[1]))

reverse the list and kits

#L = L[::-1]

#K = K[::-1]

---------3 - CALCULATE RCC1 MATRIX FOR ALL PAIRS OF KITS-------------

calculate a condensed distance matrix consisting of RCC values as per Bill Howards

paper

the condensed distance matrix is a single dimension matrix containing

the top triangle of a two dimensional distance matrix

e.g. [1,2,3,4]

[2,1,2,3]

[3,2,1,2]

[4,3,2,1]

becomes a condensed distance matrix Y of [2,3,4,2,3,2]

Y = []

X = []

for i1,v1 in enumerate(K):

 X1 = []

 z1 = np.zeros((RCC1markers,), dtype=int)

--------3A-Fabricate vectors z1 and z2------------------

 for z1x in range(RCC1markers):

 if z1x == 1:

 z1[z1x] = 1

 else:

 z1[z1x] = RCC1added

 for i2,v2 in enumerate(K):

 z2 = np.zeros((RCC1markers,), dtype=int)

 for x in range(RCC1markers):

 if v2[x] == v1[x]:

 z2[x] = z1[x]

 else:

 z2[x] = z1[x]-1

--------3B-Calculate RCC1 in Matrix------------------------

 if i2 > i1:

 if np.ndarray.all(z1 == z2):

 Y.append(0)

 else:

 Y.append((1/pearsonr(z1,z2)[0]-1)*10000.0)

 if np.ndarray.all(v1 == v2):

 X1.append(0)

 else:

 X1.append((1/pearsonr(z1,z2)[0]-1)*10000.0)

 X.append(X1)

---------4 - GENERATE THE PHYLOGENETIC TREE SPLITS-------------

perform the agglomerative clustering using the average method as per Bill Howards

paper

Z = linkage(Y,method='weighted',optimal_ordering=False)

perform linkage reordering such that the shorter branch is first, the longer branch

second

the lower index is first, the higher index is second

for link in Z:

 leftDepth = link[0]

 if leftDepth >= len(L):

 leftDepth = Z[int(leftDepth)-len(L),3]

 else:

 leftDepth = 1

 rightDepth = link[1]

 if rightDepth >= len(L):

 rightDepth = Z[int(rightDepth)-len(L),3]

 else:

 rightDepth = 1

 if leftDepth < rightDepth:

 t = link[0]

 link[0] = link[1]

 link[1] = t

 elif link[0] < link[1] and link[0] < len(L) and link[1] < len(L):

 t = link[0]

 link[0] = link[1]

 link[1] = t

---------5 - PLOT THE PHYLOGENETIC TREE-------------

plot the cluster hierarchy produced by linkage as a dendrogram

F = plt.figure(figsize=(16,20),dpi=72) # A1 paper

plt.title(I)

plt.xlabel("RCC1")

plt.grid(True,which='major',axis='x',color='g',linestyle='dashed')

plt.minorticks_on()

plt.tick_params(axis='x',which='minor')

plt.tick_params(axis='y',which='minor',length=0)

#plt.xscale('symlog',basex=2)

plt.xticks(np.arange(0,800,12))

#plt.xticks((0,1,2,4,8,16,32,64,128,256),(0,1,2,4,8,16,32,64,128,256))

- use this on recent kits within the last 50 RCC: plt.xticks(np.arange(50))

- use this on kits that split way back BCE: plt.xticks(np.arange(0,800,25))

D =

dendrogram(Z,labels=L,color_threshold=3.5,leaf_font_size=12,leaf_rotation=0,orientati

on='left')

#plt.gca().invert_yaxis()

for i, d, c in zip(D['icoord'], D['dcoord'], D['color_list']):

 y = 0.5 * sum(i[1:3])

 x = d[1]

 if x > 0:

 plt.plot(x, y, 'o', c=c)

 yr = math.floor((Byear - int(x* Rscale))/10)*10

 yr = int(yr)

 if yr >= 0:

 yr_txt = "{yr}".format(yr=yr)

 else:

 yr_txt = "{yr} BCE".format(yr=-yr)

 rcc_txt = "{:.2f}".format(x)

 plt.annotate("%s" % yr_txt, (x, y), xytext=(-6, -12),

 textcoords='offset points', color='r',

 va='center', ha='center', rotation=90)

 plt.annotate("%s" % rcc_txt, (x, y), xytext=(+7, 0),

 textcoords='offset points', color='r',

 va='center', ha='center', rotation=90)

plt.annotate("RCC1 = {rscale} years".format(rscale=Rscale),(0,0),xytext=(0,-5))

F.subplots_adjust(left=0.05, right=0.85, top=0.97, bottom=0.05)

plt.savefig("{input}.jupyter.png".format(input=I))

cite: http://www.jogg.info/pages/72/files/Howard.htm

Dating Y-DNA Haplotypes on a Phylogenetic Tree: Tying the Genealogy of Pedigrees and

Surname Clusters into Genetic Time Scales

William E. Howard III and Frederic R. Schwab

This code originally written by David Johnston in Australia.

Modified by George El Zakhem and Wesley Johnston in the USA.

Appendix 3
Testing Input Order of Kits

Context
Many clustering methods rely on a “seed” case to be identified, from which the

algorithm then can measure distance to determine whether other cases belong

in the same or a different cluster. When the seed is pre-determined or is somehow

implicit in the order of presentation of the input data to the program, researchers

need to know about this bias, so that they can take it into account when seeking

conclusions.

The phylogenetic tree method does not rely on an explicitly pre-established

seed case. The following tests sought to establish whether different input order

of the kits resulted in different output of phylogenetic trees. The tests found no

such difference. The program generated the same phylogenetic tree, regardless

of the order in which the kits were presented to the program.

The tests sought to create extreme conditions, since the high number of all

permutations of the input order prohibit exhaustive testing. Thus, there may be

some situations in which the input order of the kits does generate different trees.

But at this time, the tests found no such bias.

The tests were run only on the RCC version and not the RCC1 version, simply

because at the time the tests were run the RCC1 version had not yet been

created.

Orderings Tested
The input consisted of 19 111-marker kits in the same family project. Four

permuations of the order were tested, in two pairs:

1. Sorted on Kit Number

a. Ascending Order

b. Descending Order

2. Sorted on stepwise genetic distance from the mode

a. Ascending Order

b. Descending Order

The second pair metric was calculated as the stepwise genetic distance of each

kit from the mode of all of them. If the values of a specific marker for two kits

being compared differs by 3, then stepwise genetic distance counts that as a

distance of 3 (as opposed to simple genetic distance which counts any size

mutation as 1).

Appendix 4
Convergence, Reverse and Parallel Mutations

Context
Once Y-SNP testing became available, some researchers either advocated

ignoring Y-STRs completely in favor of Y-SNPs or else cited some very real

problems of Y-STRs as evidence that they can never effectively conform with Y-

SNP results. Other researchers saw the continuing need, because Y-SNP tests

cost much more that Y-STR tests, of predicting Y-SNP results from Y-STRs.

Paraphrasing Irwin project administrator James Irvine: Y-STR-based

analytical methods are only predictors or estimators, unlike Y-SNP-based

haplotrees which illustrate actual phylogenetic relationships. There is inherent

uncertainty in Y-STRs and inherent certainty in Y-SNPs.

With more Y-SNP tests, the haplotree fills in more and more completely,

bringing more and more certainty. But as long as the costs of the two types of

tests differ so greatly, we will always have more Y-STR test results than Y-SNP

results. And the Y-STRs really do hold information.

But Y-STRs also have possibilities of mutational events that confound

analysis of results in living test takers. From the Y-STR results alone, we cannot

know just how the test takers’ haplotypes (their values for the Y-STR markers)

came to be as they are today. This does not make Y-STRs useless but does

require that these issues remain in our consideration of results.

Convergence: Detecting and Avoiding
Convergence is when two lines of descent that at some point had clearly distinct

Y-STR haplotypes come, through reverse and/or parallel mutations, to have

identical or near-identical values for the markers in two kits when the test takers

do not in fact share a recent common ancestor.11

In the selection of input kits for RCC trees, you can detect convergence and

avoid it. Two methods greatly eliminate its impact.

Select Kit of the Same Haplogroup or Signature SNP Sub-Clade

The surest way to counter convergence is to assure that the kits are in the same

haplogroup or share the same signature SNP. Here again (see section 2 of the

11 See the ISOGG page on Convergence at https://isogg.org/wiki/Convergence and also Maurice Gleeson’s excellent

examples on his page https://dnaandfamilytreeresearch.blogspot.com/2017/05/convergence-what-is-it.html

user manual) is a note that Bill Howard posted 30 Nov 2013 on the Rootsweb

Genealogy-DNA e-mail list:12

“One last point, please try to make the haplotype set as pure as possible. By that

I mean, if it is an M222 SNP, be sure all haplotypes have been SNP-tested. If it is

a surname set, I would prefer that they all are in the same haplogroup (otherwise

the tree gets unwieldy, long, and will lack time resolution in regions of genealogical

interest). The larger the set, the better the optimization process will be when the

tree is produced …”

In both the match list for a specific kit and in the results pages of Family Tree

DNA surname projects, the terminal SNP of each kit tells whether two kits are in

the same sub-clade in the Y-SNP haplotree. So, select kits that are in the same

haplogroup or, even better, in the same sub-clade.

The primary criterion for evaluating RCC trees is how well they conform with

the Family Tree DNA SNP-based Big Y Block Tree. Generally, RCC trees conform

quite well with the Big Y Block Tree, when the input adheres to proper limits.

Select Kits with 67 or 111 Y-STR Markers

Most research published on Y-STR convergence considers 37 or fewer markers,

with statements that it can occur in 67 or 111 marker kits as well. The reality is

that such a statement is virtually meaningless in the absence of empirical

evidence. You could just as truthfully say that convergence could occur in kits

of 10,000 markers. Just because it theoretically can occur does not mean that it

does occur to any significant extent.

Existing convergence research rests on empirical evidence of the same or

similar haplotypes having different SNP results. There is no empirical evidence

of the underlying mechanisms: how often they occur, over what time frames and

in what other conditions. Because all the mutations happened before now, there

is no way to gather such empirical past evidence. So, we are left with theoretical

considerations.

When the total number of markers is small, the probability of all or nearly all

of them aligning for convergence is higher than when the total number of

markers is large. The more markers under consideration, the more mutations

would be needed to have either reverse or parallel mutation result in two kits

ending up with nearly identical STRs when in fact their SNP results differ.

Of course, even if only one out of 111 markers has a reverse or parallel

mutation back in time somewhere, the kit can still exhibit convergence. But

12 Rootsweb terminated support for e-mail lists in 2020. The Genealogy-DNA list successor for the broadest group of

former Rootsweb members is now at https://groups.io/g/genealogy-dna

during that same period, it is likely that other markers will also mutate, so that

the higher number of markers still reduces the likelihood of convergence.

The bottom line: the more Y-STR markers you use, the less likely –

exponentially and not linearly – the possibility of convergence. So, use only 67

or, more preferably, 111 marker kits as input to your RCC tree runs.

Time Frame and Compactness

For convergence to become a problem, mutations must occur. In the case of

reverse mutations, two non-concurrent mutations must occur. If the objective of

the RCC tree is to show kits that are expected to be related within the era of

surnames (roughly 20 generations ago) or more recently and the kits all share

the same SNP, then the probability of convergence happening during the time

period to the Most Recent Common Ancestor is low.

As a quick alternative to looking up SNPs for kits that have not Big Y tested,

Wesley Johnston uses a rule of thumb that the kits going into the RCC algorithm

that form a compact group: kits that have stepwise genetic distance of less than

15/111 from the mode of the group.

Another way to enforce a limited time span is to generate an RCC tree and

then select one particular branch of that tree to recalibrate and run another RCC

tree with just those kits.

The Bottom Line: Convergence is Detectable and Avoidable
While Y-STR convergence is real, it occurs over a long period of time in small sets

of markers. The RCC tree (and all other forms of Y-STR analysis) can detect and

avoid the impact of convergence with easy steps in the selection of input kits:

1. Select kits in the same haplogroup or sub-clade.

2. Select kits with 67 or, preferably, 111 markers.

3. Select kits that form a compact group.

